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NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-93

APPLICATION TO FLUID DYNAMICS OF THE THEORY
OF REVERSIBLE HEAT ADDITION

By Barrett S. Baldwin, Jr.
SUMMARY

A discussion is given of the approximations required to relate the
equations of Hicks and Shapiro for gas flows with heat addition to the
general relations for radiating, reacting gas flows given by Hirschfelder,
Curtiss, and Bird. It is indicated that the theory of Hicks and Shapiro
corresponds to reversible heat addition because of the absence of dissipa-
tive terms in the momentum equations. When applied to combustion problems,
the theory is applicable to air-breathing engines at speeds up to about
half of satellite speed. The theory of reversible heating is applied to
underwing heat addition at hypersonic speeds, and the results of a series
of exact calculations are given. The effects on aircraft range of
several arrangements of external heat addition are presented.

INTRODUCTION

Three types of flow which are of practical interest in aeronautics,
but for which a relatively small number of solutions are available are
(1) those associated with combustion problems, (2) flow of a gas not in
equilibrium with respect to all degrees of freedom, and (3) flow of a gas
under conditions such that the flow field is partially determined by
radiation absorbed and emitted by the gas.

In this work, a self-consistent theory of inviscid flow with reversi-
ble heat addition has been selected for study. The applicability of this
theory to the types of flow listed above will be discussed briefly.
Methods for obtaining solutions will be described and several solutions
applicable to the underwing heat addition problem will be given.

It is observed in reference 1 that for combustion processes occurring
in flowing fuel-air mixtures, effects owing to changes in chemical compo-
sition are small compared with effects owing to changes in stagnation
temperature. An excellent treatment of one-dimensional flows involving
changes in stagnation temperature is given in reference 2. The basic
equations for the corresponding two- and three-dimensional flows are
given in references 3 and L.



In reference 5 a graphical method for solving the basic equations is
employed to analyze the underwing heat addition problem. In references 6
to 10 the basic relations are linearized and applied to aircraft external
combustion problems. The results of the linearized analyses indicate a
need for a study of stronger heating effects than those for which the
linear theory is wvalid.

BASTC FLOW EQUATIONS

The basic equations of reference 4 are as follows:

The continuity equation

—
—_— i =0
i div v (1)
The momentum equation
Dv _
o pr + erad p = 0 (2)
The energy equation
Dh _ Dp
POt "ot W (3)
The equations of state
h = h<S;P)
p = p(s,p) (5
s = s(p,p)

The continuity and momentum equations are identical to the usual
inviscid relations for adiabatic flow. If the heat addition were not
assumed reversible, to be consistent it would bc necessary to add terms
depending on a bulk viscosity parameter in the momentum equations. How-
ever, we will assume reversible heating and will briefly investigate the
applicability of this approximation to real flows.

The energy equation is the usual relation for inviscid flow except
for the addition of the term on the right, Qy, which is the distribution
of heat addition per unit volume per unit time. In reference k4, the
quantity Qy is replaced by pg din which g 1is the heat power per unit
mass rather than per unit volume.




The equations of state, not given explicitly here in order to preserve
generality, will be specified when needed.

From these basic relations, it can be shown that in many cases the
flow i1s irrotational, and the flow field can be expressed in terms of a
velocity potential. Technigques applied to inviseid flow problems, such
as linearization, the method of characteristics, etc., can be applied to
two- and three-dimensional flows with reversible heat addition.

APPLICABILITY OF BASIC FLOW EQUATIONS
TO REAL GAS FLOWS

A very general set of fluid flow relations is given in reference 11,
chapter 11. These equations apply to any continuum, radiating, reacting
gas flow when the translational degrees of freedom are nearly in equilib-
rium. ¥ven turbulent flows and flows involving magnetohydrodynamic
effects must be determined in part by the relations given there.

Our continuity and momentum equations follow directly from the
equations of reference 11 after the deletion of viscous and body force
terms. For a reacting gas mixture, the pressure appearing in these
equations is the total pressure exerted by the mixture, and p 1is the
total density. However, it is expedient to use an approximation wherein
the quantity p appearing in our equations 1s taken to be the partial
pressure of the nitrogen and that fraction of the oxygen and products of
combustion corresponding to the number of oxygen moclecules present, free
and combined. Similarly, the density p appearing in our equations is
taken to be that part of the true density which is contributed by the
air. These two approximations amount to neglecting the fuel mass flow
and forces due to the fuel mass flow, the presence of the fuel being
taken into account only in the energy equation. For combustion in rocket
motors, the forces due to fuel mass flow cannot be neglected because they
are the largest forces present. But in air-breathing combustion systems,
these forces are minor at vehicle velocities up to about half of satellite
velocity, depending on the fuel.

Our energy equation can be related to equation (11.1-4) of reference
12, which, with the deletion of terms associated with heat conduction,
diffusion processes, viscous dissipation, and body forces, is the
expression

_ 1 Lo E _—
= -5 div ag - 5 div v (5)
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where ﬁ is the internal energy per unit mass of the reacting mixture
and ah is the energy flux vector due to radiation.



The quantity div aﬁ is equal to (R - A) where R is the radiation
energy emitted by the gas per unit volume per unit time and A is the
corresponding absorption of radiant energy. Equation (5) can then be
written +

W_A-R_Pgivy (6)
Dt P P ’

In the actual process of absorption of electromagnetic or nuclear
radiation (@ particles, B particles, fission fragments, etc.), the gas
atoms are excited at levels of energy which are large compared to ordinary
thermal energies. Strictly, the excited atoms should be treated as sepa-
rate chemical species and rate constants found for the transitions to
lower energies by collision and by radiation. However, if these rates
are sufficiently fast or if the fraction of atoms excited is small, such
details are unimportant and only the net absorption (A - R) need be
considered.

Using the continuity equation and the identity

§+2= 4+ 22
U+ 5 h+U+ 5 h
one can express equation (6) as A
Dh 1Dp A-R_DIf._ -k .
Dt © Dt P Dt [U < p>] (0

This relation follows from the previous one for an arbitrary defini-
tion of the quantity h. Several definitions are of interest. One such
is to take h to be that part of the enthalpy which is in equilibrium
so that h is a function of the temperature and pressure. Then the
quantity (6 - (h - P/D)] is a part of the internal energy which is not a
function of the temperature and pressure alone, but instead depends on the
temperature and pressure history through reaction-rate relations given in
references 11, 12, and elsewhere.

For the sake of definiteness, h 1is here defined to be the same
function of entropy and pressure as the enthalpy of air in equilibrium.

Our energy equation follows from equation (7) by setting the right
side of equation (7) equal to Qv/p, that is, by imposing the relation «

) S
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In accord with the previous approximations regarding pressure and
density, the quantity h - p/p is the internal energy of air at equilib-
rium at the existing temperature and pressure. Thus the quantity
[§ -(h - p/p)] is the difference between the total internal energy of the
reacting mixture and the internal energy of air at the existing temperature
and pressure.

As previously mentioned, our momentum equations are consistent with
the assumption of reversible heat addition. This means that the contri-
bution of the fuel to the entropy is neglected as well as its contribution
to the pressure and density. In other words, the entropy is taken to be
the same function of pressure and density as is the entropy of air in
equilibrium.

Equation (8) must ultimately be taken into account in a complete
theory of heat addition, but for the present we join earlier investiga-
tors in seeking the consequences of taking the quantity Qy to be an
independent variable. The resulting solutions may be useful as the first
step in a more exact iterative solution of combustion problems, nonequi-
librium flow problems, and flow problems in which radiative heat transfer
1s taken into account.

It should be emphasized that the theory of reversible heat addition
defined by equations (1) to (4), although only approximately related to
real gas flows, is a self-consistent theory which can be analyzed
rigorously.

FLOW WITH SPECIFIED THERMODYNAMIC PROCESS

The present study was undertaken to provide a basis for analysis of
the underwing heat addition problem. The distribution of heat addition
can be specified at the outset. Numerical examples of the results for
this case will be presented. However, we will first consider an alterna-
tive procedure of specifying the thermodynamic process in the entire flow
field and then solve for the required distribution of heat addition. It
will be seen that this alternative leads to simplification because it is
possible to solve for the pressure, density, and veloecity filelds independ-
ently of the energy equation in this case.

If a thermodynamic process is sgpecified, the pressure is a known

function of density (i.e., the gas is barotropic). In that case (1/p)dp
is a perfect differential, which can be expressed by the relation

%@=d<-% (9)




where w 1s the work done per unit mass by the element of gas under
consideration; dw is a perfect differential only if a thermodynamic
process is specified as is here the case. If dw is a perfect differ-
ential, it can be shown that the flow remains irrotational when it origi=-

nates in an irrotational region and is continuous, whether steady or
unsteady.

For irrotational flow, the momentum equations can be written in terms
of a veloecity potential ¢ and integrated to obtain the relation

Po

2 2
(9,7 + 9,7 - 5=

(10)

Use of this relation together with the continuity equation leads to the
equation

_ dp 1 2 1 2
Dy + Pyy —55{[% +5 (02 + oy )L + Py [cpt +5 (0 + @yZ)L

+ 9y [@t + % (0 % + coyz)]y} | (11)

The quantity dp/dp is a function of (w - p/p) which is determined
by the equations of state and the specified thermodynamic process. It
follows from equation (10) that dp/dp is a known function of
Py + (1/2) (952 + 0y3).

As an example, consider a thermodynamic process specified by the

relation for a polytropic gas
g
b p
i = | — 12
Po (é;> (22)

In this case the equations of state are not needed to arrive at the
relation

[q)t +< (ch2+cpy2)L+cpx Epﬁ% (ox2+ wyz)] + 0y Ept +2 (924 wyz)}
X J
+0., =
Y
Po _ (.. 1 2 2
g5, - (e-1) [@t"’z(cpx + Oy )]

Pix

(13)

This differential equation is identical to the potential equation for
isentropic flow of an ideal gas, except that the ratio of specific heats
is here replaced by the constant g, which is not necessarily a ratio of
specific heats. Yet no use has been made of explicit equations of state




in the derivation. Consequently this result applies to any gas in
equilibrium. The energy equation, not previously used, can be used
together with the equations of state to find the distribution of heat
addition Q, required to produce the flow. For an ideal gas, this
relationship is given by the expression

Ay = Z—:%) Po {l- <—g—§> %z- [mt + % (02 + cpyz)] }g/g.-l(wm + 9uy)  (14)

Although gases in equilibrium cannot have values of the ratio of
specific heats less than 1, nor greater than 5/3, flows corresponding to
values of g from minus infinity to plus infinity can be constructed,
if it is possible to supply the required distribution of reversible heat
addition to the flow without other effects.

DISCONTINUITIES

We will now return to the solutions of the basic equations with the
distribution of heat addition specified at the outset. Most arbitrary
distributions of heat addition lead to rotational flows and are difficult
to treat analytically. However, classes of irrotational analytical solu-
tions can be found which are applicable to the underwing heat addition
problem.

Consider a stream tube passing through a normal shock wave as
depicted in sketch (a). Ahead of and behind the wave the flow 1s uniform
with a transition region between.
No knowledge of conditions in the
transition region is required to
obtain the shock-wave relations.

TRANSITION REGION

However, it is interesting that — —U,
the transition can be achieved by Do P HEAT PP,
reversible heating and cooling; ADDITION COOLING

that is by heating in the forward
part of the transition region
until the Mach nunber reaches 1, Sketch (a)

and cooling in the rear part of

the transition region until the amount of heat energy extracted is equal
to the amount previously added. Since heat is extracted at a higher
temperature than it is added, there i1s a net entropy increase equal to
that which occurs in a shock wave.

We wish to consider other discontinuities in which there is a net
addition of heat energy. In that case, for an ideal gas, the counter-
part of the Rankine-Hugoniot relation is the expression



(7 -1) + (7 +1) 22
P2 _ Pa (15)
D 2u
Loy +1) + (y -1) ——Pf+(7 - 1) o

where p 1is the total enthalpy increase across the discontinuity. For
present purposes, pu 1s taken to be an independent variable. In the
special case where the value of u 1s such that the Mach number behind
the discontinuity is equal to 1, the Chapman-Jouguet rule is satisfied,
and the discontinuity is a detonation wave. In practice, other values

of p can be achieved by combustion alongside of struts inserted into
the transition region, or by combustion of fuels with high reaction rates
at the ambient temperature. We assume that other dimensions are large
compared with the thickness of the transition region in treating the
transition as a discontinuity. When p is not equal to zero, Jumps from
supersonic to any lower Mach number down to that corresponding to a shock
wave and from subsonic to any higher subsonic Mach number are possible,
without the necessity of heat transfer from cold to hot regions.

Oblique and curved discontinuities with heat addition can be con-
structed from the results for the normal case in analogy to such construc-
tlons for shock waves. In general, curved discontinuities introduce
rotation in the flow.

The pressure jump is given by the relation

2
2 _ 1+ 7Mp,
. ‘ b1 1+ 7Mn22

e}

(16)

where Mnl is the incident Mach number normal to the discontinuity

and Mp, 1s the normal Mach number behind. The total enthalpy increase
L is given in terms of initial conditions and normal Mach numbers by the
relation

M y (Mhlz"Mn22)[7Mh12Mn22"l - % (7"1)(Mn124'Mn22)]
pi/pr  7-1 My, 2(1+ 7My )

(17)

Equations (15), (16), and (17) apply to normal or oblique discontinuities.
Sketch (b) depicts a convenient set of angle coordinates for the oblique
case. The followlng expressions relate these angles to the independent
variables, M;, Mp,, and Mp,: .

cos 61 = %?f (18)
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Sketch (b)
cos 8y = y%i- (19)
21 2
tan 65 = Yoy (1 + 7, ) tan 6 (=20)

UNDERWING HEAT ADDITION PROBLEM

An important application of the reversible heat addition theory is
in the evaluation of underwing heat addition or other aircraft external
combustion schemes. This idea has been treated in references 5 to 10,
and elsewhere. Sketch (c) is a sketch of a two-dimensional wing with heat

—

HEATED REGION )
BOW SHOCK

Sketch (c)

addition in the region below the wing. In the linearized approximation
the flow is irrotational, and it is found that for given heating there
are optimum values of wing thickness ratio and angle of attack. Also,
according to linear theory, the amount of heating should be as large as
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possible or zero depending on the flight Mach number and engine character-
istics. It turns out that the interesting values of heat addition are
beyond the range of validity of the linear theory.

In the exact problem, the flow is rotational, and numerical methods
are required for solution. A series of exact numerical solutions for
heating under a flat plate have been obtained in reference 13. In the
cases considered, the results indicate that the linear theory overesti-
mates the aircraft performance obtainable from underwing heat addition.

In reference 10, an extension of the linear theory is used to show-that
the performance would be improved by disposing the heat along forward-
going characteristics under the wing. In an attempt to verify this pre-
diction using exact solutions, several possibilities for using the
techniques previously discussed in this work are open. Sketch (4) depicts

—_—V

~
PRANDTL-MEYER_~
EXPANS\ON///

DETONATION WAVE—

,—SLIP SURFACE
SHOCK WAVE—/

Sketch (4)

an airfoil shaped so as to maintain irrotational flow in the presence of
heating. The heating is disposed along forward-going characteristics
under the wing by means of an oblique detonation wave or other type of
oblique discontinuity with heating. The detonation wave is followed by
a Prandtl-Meyer expansion, which can include further heating, if a value
of the polytropic exponent g less than 7y 1s used. At the lower end
of the detonation wave, a slip surface occurs between the heated and
unheated air. Also a shock wave occurs below the heated region because
of the deflection of the slip surface with respect to the free stream.
What might be termed complete expansion is reached when the lower surface
of the airfoil becomes parallel to the slip surface. If the airfoil
lower surface is continued in a straight line after complete expansion,
the flow behind the expansion will be uniform.

A1 of the results to be presented in this work are specialized to
the case of ohlique detonation waves with no heating in the Prandtl-Meyer
expansion. - Also, for present purposes, we will concentrate on the pressure
forces on the lower surface while ignoring the pressure forces on the
upper surface and the friction drag.
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Before the results of the computations are given, further explanation
of the notation is needed. For perfect combustion efficiency, an over-all
engine efficiency can be written as the dimensionless ratio TV/Q, where
is the heat power in units of foot-pounds per second, T is the thrust in
pounds, and V 1is the vehicle velocity in feet per second. Since thrust
can be developed by combustion under a wing, the ratio TV/Q for the wing
is of interest for a determination of the acceleration efficiency of the
wing. A similar ratio, LV/Q, takes the place of L/D in the range equa-
tion. For a conventional aircraft, the range is proportional to the pro-
duct of L/D times the engine efficiency TV/Q. Since the thrust is
equal to the drag in steady flight, this product becomes LV/Q.

In figure 1 plots are presented of the quantity LV/Q versus the
power coefficient CQ for flight Mach numbers from 5 to 10. The quan-
tity Cq 1s a measure of the throttle setting or, more precisely, it is
the dimensionless ratio Q/(1/2)cVeCV. Also shown is the lift coefficient
resulting from the pressure coefficient on the lower surface. The pre-
diction of reference 10 that values of EV/Q greater than the flat-plate
linear-theory value can be achieved is verified for small values of the
power coefficient. However, it will be seen that for practical values
of the power coefficient in the cases considered, the linear theory over-
estimates the performance, in agreement with the findings of reference 13.
Strictly, the ratio ILV/Q should be evaluated at zero total drag. How-
ever, to avoid specifying the airfoil upper surface and the friction drag,
the values of LV/Q in figure 1 have been computed for zero pressure
drag on the lower surface. Hence there remains a net drag of the same
order as the friction drag. This will have a minor effect on range when
the 1ift coefficient is large compared to about six times the friction
drag coefficient. Consequently, the results in figure 1 for 1lift coef-
ficlents less than about 0.05 are not of practical significance. The
results for Mach numbers 5 and 7 require heat addition less than that
corresponding to the stoichiometric ratio for gasoline. In the Mach
number 10 plot, the power coefficient corresponding to the stoichiometric
ratio is noted.

For the results shown in figure 1, the Prandtl-Meyer expansion was
extended as far as possible and a straight section of airfoil was added
after that in order to develop the maximum 1ift consistent with zero
pressure drag on the lower surface. If the airfoil is cut off at the
point where the lower surface becomes horizontal, the thrust is a maxi-
mum. In figure 2 plots are presented of TV/Q versus power coefficient
under this condition. The thrust coefficient and 1ift coefficient
resulting from the pressure coefficient on the lower surface are also
shown. It can be noted that engine efficiencies of 0.10 to 0.12 can be
achieved by means of combustion under a wing compared with values of 0.3
or higher for conventional ram jets. However, rather large 1ift coeffi-
cients occur as a by-product of the underwing combustion.

Q



CONCLUSIONS

Methods have been described for obtaining exact solutions (within
the framework of the theory of reversible heat addition) applicable to
the evaluation of aircraft external combustion schemes. Several such
solutions have been applied to the underwing heat addition problem. The
results show that the type of external combustion considered may not be
advantageous in the Mach number range from 5 to 10, if conventional ram-
jet engine efficiencies greater than 1/3 can be achieved. However, cer-
tain problems connected with radiant heat transfer and variable geometry
may be lessened in the case of external combustion. If lower efficiencies
must be accepted, the results given should be useful for estimating the
performance to be expected from underwing heat-addition schemes.

SYMBOLS
A radiation energy absorbed per unit volume per unit time
C airfoil chord measured from detonation wave
. . L

CL 1ift coefficient, Zi7§7;§§6
Cq power coefficient, 8

(1/2) pvEcV
Crp thrust coefficient, — L ___

(1/2)pV2C
D drag
D . . . 0 =3
T substantial derivative, S{ + V.V

polytropic exponent

h enthalpy of air per unit mass
L 1lift
M free-stream Mach number
Mﬁl Mach number normal to discontinuity on upstream side
Mp, Mach number normal to discontinuity on downstream side

D pressure




X,¥,%
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distribution of heat addition per unit mass per unit time

total heat energy addition per unit time (same units as LV)

distribution of heat addition per unit volume per unit time
energy radiated per unit volume per unit time

time

thrust

internal energy per unit mass

velocity

work done per unit mass

Cartesian coordinates

ratio of specific heats

engine efficiency

angle between incident stream and normal to discontinuity
angle between normal and stream behind discontinuity
total enthalpy increase across discontinuity per unit mass
density

velocity potential

velocity components
Subscripts

reference value

conditions ahead of discontinuity
conditions behind discontinuity
normal component

rartial derivative with respect to subscript
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